MACHINE the reasonable TRANSLATION ▬ middle ground FACT OR FANCY ?

نویسنده

  • PAUL L GARVIN
چکیده

few years ago, a number of news stories appeared here and there announcing "fundamental breakthroughs" in the development of machine translation from Russian into English and declaring that workable machine translation systems, if not already a reality, were just around the corner. Since then, one or two government agencies have begun to operate automatic translation facilities with which some users were partly satisfied, some not at all, and none completely. More recently, a committee constituted by the National Academy of Sciences, National Research Council—the Automatic Language Processing Advisory Committee (ALPAC)—conducted a two-year study of the field of machine translation and came to the conclusion that "without recourse to human translation or editing . . none is in immediate prospect." Where, then, do we stand in machine translation? Were the claims justified that were made in the earlier days, or is ALPAC correct in concluding that there is no prospect for its achievement in the foreseeable future? In my opinion, both are wrong. To substantiate my view, let me give a brief survey of the state of machine translation. First, let me make clear that the field of machine translation is (with one glaring exception—the photoscopic disc) not primarily concerned with the design of a special translation machine, but with the design of translation programs to be run on large general-purpose computers. Let me add that the major effort so far in this country has been directed toward the machine translation of Russian into English, although some experimental work has also been done on other languages (such as Chinese and German). Two extreme approaches have been taken to the field, and one which I consider a reasonable middle ground.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Translation Quality of Google Translate: With a Concentration on Adjectives

Translation, whose first traces date back at least to 3000 BC (Newmark, 1988), has always been considered time-consuming and labor-consuming. In view of this, experts have made numerous efforts to develop some mechanical systems which can reduce part of this time and labor. The advancement of computers in the second half of the twentieth century paved the ground for the invention of machine tra...

متن کامل

Toward integrating word sense and entity disambiguation into statistical machine translation

We describe a machine translation approach being designed at HKUST to integrate semantic processing into statistical machine translation, beginning with entity and word sense disambiguation. We show how integrating the semantic modules consistently improves translation quality across several data sets. We report results on five different IWSLT 2006 speech translation tasks, representing HKUST’s...

متن کامل

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012